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Abstract 
This article briefly presents recent AI-related solutions for bridge management 

systems supporting the operation of the transportation infrastructure. The generic structure of 
a management system is presented, and some current research and practical developments are 
introduced. Additional ideas concerning design and construction stages are also mentioned. 
The focus is put on bridge structures but the presented methods are easily applicable to 
highway and road management tasks. 
 

Introduction 
Among many domains of technology, the civil engineering is frequently considered as 

the “artistic” one – however, in scientific terms, the word “heuristic” would be more 
appropriate. Design challenges, location fixing, construction course, load and traffic control, 
maintenance and repair – all these aspects involve heuristic issues. The difficulties with 
modelling the reality in bridge and road management systems are mostly caused by large 
complexity of engineering structures and intricate relationships among the mentioned aspects. 
An additional problem appears due to a need to make decisions in an environment 
characterised by an incomplete or imprecise data on the managed object [Bien 97]. Thus, 
there is a little possibility of settling an exact mathematic model for these problems while the 
management practice requires a model that can be a subject to a professional expertise. These 
factors determine a necessity of equipping such systems with AI methods, namely the so-
called utilitarian AI. This term encompasses a range of highly specialized components that 
suitably serve a specific need of the management system. Until recently nearly only symbolic 
processing has been used. At present the evolutionary algorithms, neural networks and fuzzy 
logic-based systems are all on the stage.  

The most widely exploited domain of AI applications in civil engineering is the design 
of the transportation infrastructure. There has been plenty of research projects affiliated with 
this subject [Reich 95] expressing such ideas as a preliminary conceptual design of bridges, 
determining an optimal location of the structure, automatic design of the basic components 
(e.g. design of bridge foundations or safety evaluation for high seismic activity areas), 
scheduling construction works, and aesthetics issues. The techniques applied include rule-
based expert systems, AI-related multiobjective optimization algorithms, neural mappings, 
and a case-based reasoning. It should be noted that many of these concepts have been 
implemented for the real-life purposes. 

However, handling the design and construction stages seems easier than the 
subsequent management of the infrastructure. There are several causes for this [Bien 02]: 

• the design process is individually adjusted to each structure, while a global 
management requires the comprehensive solutions, 

• designing is performed according to the specific law standards and a management 
must be done with regard to the actual state of structures and user requirements, 

• during the operation-time management a question of degradation arises along with a 
need for technical condition and serviceability evaluation methodology, 
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• the management purposes often require the system to use an incomplete or uncertain 
information. 

Due to a significantly smaller bibliographic representation and a complexity of the 
problem, this article focuses on the evidence, maintenance and operation management of 
bridge structures. Specialized systems that aid these activities are commonly called the BMS 
(Bridge Management Systems). Among the bridge structures one may distinguish bridges, 
viaducts, overpasses and footbridges. On the area of Poland, there are circa 30000 road 
structures and 10000 railway structures of these types. These constructions are usually 
relatively aged (almost half of the rail objects have been erected in 19th century), which means 
that they require especially efficient monitoring and management [Bien 97]. The bridge 
administration units often supervise other engineering structures, such as tunnels, 
underpasses, retaining walls and culverts, the latter constituting almost 70% of the total 
structure quantity. The number of all civil engineering structures in Poland exceeds one 
hundred thousands and this stock of infrastructure definitely requires a “large-scale” 
management. However, in the bridge management systems which are currently used in 
Poland, no elements of AI are applied. The systems also need precise terminology for 
semantic unification of the collected data. This challenge is even more apparent than in more 
prosperous UE countries and the United States. 
 

The BMS Architecture 
The architecture of a typical bridge management system consists of the four following 

functional modules: 

Inventory. The goal of the inventory part is to collect, store, process and present 
required information on bridge structures along with their locations in a transportation system. 
Information concerning each object is usually organized as follows: 

• identification data (name and number, geographic and administrative location, 
obstacle information – commonly presented using GIS techniques), 

• a numerical model of the object, containing geometry data, material and construction 
types of each component, 

• additional information, such as technical documentation, description of non-
construction components, personal details of people and companies affiliated with the 
object. 

Apart from the classic forms of data representation, the modern systems offer a 
possibility of storing multimedia, such as images, sound and video clips, or hypertext. The 
basic inventory data processing functionalities include data verification, searching, filtering 
and sorting. Documents, reports and statistical sheets can also be generated, either when 
required by regulations or user-defined. 

Maintenance. This part of the system targets systematization of data collected during 
technical inspections which contains descriptions of detected damages and measured values 
of their significant parameters. The key aspect of describing damages is the uniformity of its 
classification, identification and modelling scheme. This data, handled with an objective 
methodology of evaluating the individual damages contribution to the technical condition of 
the whole structure, can be used later to forecast how the technical condition would change 
and to plan the maintenance works. In advanced systems the maintenance function is often 
enriched with extra functionality, such as the possibility of storing survey results (material 
analyses, nivelations, deformations and movements, structure test loads) or monitoring the 
technical condition. 
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Operation. In this module the system stores and processes time-changing data 
concerning the following structure elements: 

• traffic arrangement – road traffic lanes, railroad tracks, sidewalks, safety and 
emergency lanes; 

• operation parameters – clearance over and under the structure, speed and load limits); 
• operating conditions – environment aggressiveness, traffic intensity and composition 

load. 

Using above data, the system evaluates the current serviceability. This parameter is 
needed later by the forecasting and planning functions. Additionally, the operation function 
allows for analyzing the possibilities of special (e.g. extra-heavy) transports. It also aids 
managing information about specific events, such as failures, building or natural disasters, 
collisions and traffic accidents.  

Planning. The planning module aids the decision processes, especially the 
optimization of resource distribution for maintenance works, taking technical condition and 
serviceability evaluation into account. The applied forecasts are based on the appropriate 
degradation and rehabilitation models [Bien 02]. Apart from economic advising, the planning 
module can be designed in a way so it could assist in developing maintenance strategies, e.g. 
by the selection of materials and technologies or by monitoring work execution. 
 

Possible applications of AI to BMS 
The potential applications of AI to the individual aspects of transportation 

infrastructure management may be multiplied, according to the considered detail level.  Some 
of the possible expert tools (also called the “expert functions”) within the main parts of the 
BMS are presented in the fig. 1., followed by a short description of their target applications, 
inbound and outbound data, knowledge acquisition sources, proposed AI techniques and 
validation methods. This diagram also shows a proposed flow of information in an integrated 
system. 

Currently an essential source of knowledge for most of the mentioned tools is the 
human expertise. With the growing quantity of standardized data collected in the BMS, a 
significant part of knowledge could possibly be acquired through data mining facilities. 
Needless to say, that the standardization is crucial here – parameter classes and scopes should 
be formally defined and commonly used text descriptions should never be used for 
meaningful factors to avoid obvious discrepancies and ambiguities with the modelling of a 
knowledge base. The high modelling precision allows utilizing the data mining technology, 
which may be helpful with the successive correcting and supplementing the knowledge of the 
system, especially the degradation and rehabilitation models and the economic planning 
criteria. 

 The most apparent advantages of the expert functions applications to the civil 
engineering management systems are: an increase of efficiency in finding the solution for 
complex problems, high reliability and quality of the expertise (thanks to a consequent 
inference and an effective tuning), a possibility of simultaneous use of various domain 
experts’ knowledge, and – last but not least – the lower cost of obtaining the results than with 
human experts. 
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Fig. 1. The potential applications of expert tools to the bridge management systems. 
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Data logical consistency evaluation 

• target application: controlling and verifying the logical consistency of the data collected 
in the system, detecting possible contradictions in technical data (e.g. a material that does 
not match a construction type), 

• inbound data: inventory data inserted into the system by inspectors; 
• outbound data: data logical consistency evaluation in a normalized scale, a report on 

found irregularities; 
• knowledge acquisition sources: system database, expert knowledge; 
• AI techniques: rule-based reasoning; 
• algorithm validation methods: verification by experts. 
 
Damage reason diagnostics 

• target application: determining possible causes of the detected damages; this information 
is used to plan the types and range of maintenance (repair) works; 

• inbound data: inventory data, numerical description of the construction damages (a 
damage class identification, location and quantitative parameters – usually numeric or 
linguistic variables describing the intensity and the extent of the damage); 

• outbound data: a list of the possible damage reasons, along with the probability weights; 
• knowledge acquisition sources: maintenance database of the system, expertise, opinions 

and bridge engineering handbooks, expert knowledge; 
• AI techniques: analogical to those used by medical diagnostics (a similar character of the 

problems) – rule-based reasoning, neural networks, causal modelling, etc. 
• algorithm validation methods: a comparison of system results to the existing reports 

(created by experts) containing the identification of damage causes. 
 
Technical condition evaluation 

• target application: determining technical parameter values of the structure when 
compared to designed (ideal) values; this information is used for monitoring the 
degradation process and in maintenance planning tasks; 

• inbound data: inventory data, numerical descriptions of the construction damages; 
• outbound data: technical condition evaluation of the construction element, normalized to 

the established BMS scale; 
• knowledge acquisition sources: maintenance database of the system, expert knowledge, 

results of the survey and construction analysis; 
• AI techniques: rule-based reasoning, fuzzy inference, neural networks, hybrid techniques; 

several efforts are made to create an evaluation system that learns during operation; 
• algorithm validation methods: comparing evaluation assessed by the expert to the results 

gained independently by the system. 
 
Serviceability evaluation 

• target application: determining the conformity of the actual operation parameters of the 
structure to the requirements stated by users; this information is used to estimate the 
appropriate operating conditions (e.g. traffic constraints, such as speed or load limits); 
serviceability data is also an important factor in the planning process; 

• inbound data: the actual operation parameters of the structure (loads, clearance, speed 
limit, etc.), the required operation parameters, qualitative and quantitative data on the 
existing damages; 
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• outbound data: serviceability evaluation normalized to the system scale; 
• knowledge acquisition sources: system database, statistical traffic data, expert knowledge; 
• AI techniques: rule-based reasoning, fuzzy inference, neural networks, hybrid techniques; 
• algorithm validation methods: verification by the experts. 
 
Technical condition forecast 

• target application: estimation of the expected technical condition in a given period with 
respect to the various operation conditions; this information is used by the planning 
functions; 

• inbound data: age of the structure, forecast period, description of the existing structure 
damages and its possible origins, the history of the technical condition, environment 
aggressiveness (traffic intensity, load structure) and the maintenance level during the 
analysed period (a rehabilitation outlay expressed in % of the total reconstruction value); 

• outbound data: the predicted damage parameters and a technical condition evaluation for 
the given period; 

• knowledge acquisition sources: the maintenance database of the system, expert 
knowledge, statistical algorithms for traffic load prediction, the results of the structure 
analysis, statistical data characterizing an environment, information on the structure 
maintenance level; 

• AI techniques: various, dependent on the existence of degradation and rehabilitation 
models for the structure; the ability of the machine learning from the results of the 
consecutive technical inspections is desirable; 

• algorithm validation methods: simulation of the forecast using the data collected by the 
bridge management systems. 

 
Serviceability forecast 

• target application: establishing the expected changes of serviceability in a given period 
with respect to the various operation conditions; this information is used in planning; 

• inbound data: age of the structure, forecast period, description of the existing structure 
damages, the history of serviceability and operation parameters, a forecast of the operation 
parameters, environment aggressiveness, maintenance level; 

• outbound data: operation parameters and serviceability forecast for a given period; 
• knowledge acquisition sources: system database, expert knowledge, transportation 

development forecasts; 
• AI techniques: neural networks, hybrid networks. 
• algorithm validation methods: verification by experts, simulations with historical data. 
 
Selection of materials and technologies 

• target application: aiding the process of selecting an optimal maintenance (repair) work 
technology along with material recommendation; 

• inbound data: inventory data, description of existing structure damages, the history and 
forecasts of technical condition and serviceability; 

• outbound data: the suggested technology of rehabilitation (maintenance) works; 
• knowledge acquisition sources: data extracted from the system database regarding 

previously executed maintenance tasks and their results (for various rehabilitation 
technologies), expert knowledge, information on materials, technologies and costs of the 
maintenance works, technical documentation; 

• AI techniques: rule-based reasoning, neural networks, hybrid networks; 
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• algorithm validation methods: verification by experts, simulations with historical data. 
 
Optimization of the resource distribution 

• target application: optimization of the budget resource distribution for a given level of 
maintenance and user-defined optimization criteria, using technical condition and 
serviceability forecasts; 

• inbound data: inventory data, a history and forecasts of technical condition and 
serviceability; 

• outbound data: a ranking list of maintenance tasks, ensuring the maximum possible 
improvement of the technical condition and serviceability for a given general level of 
maintenance; 

• knowledge acquisition sources: system database, expert knowledge; 
• AI techniques: various multiobjective optimization techniques; 
• algorithm validation methods: verification by experts, simulations with historical data. 
 
Monitoring the maintenance work execution 

• target application: conformity controlling of a type, scope and time limits of maintenance 
works to the previously accepted schedule; 

• inbound data: a scope and a schedule of the planned maintenance works, estimation of 
costs, technical parameters, current data on the realization progress; 

• outbound data: an opinion on work progress conformity to a schedule, a forecast of 
changes in execution parameters; 

• knowledge acquisition sources: technical documentation, system database, expert 
knowledge; 

• AI techniques: various; 
• algorithm validation methods: verification by experts, simulations with historical data. 

 
The recent AI research projects for BMS 

Recently there have been numerous approaches to apply AI techniques to the 
maintenance and operation phase of civil engineering structure life-cycle [Reich 95]. Among 
them a lot of interesting solutions for specific problems have been presented: 

• condition analysis – static and dynamic load tests of bridges, using designated or 
random traffic load schemes; 

• structural monitoring – bridge in-situ dynamic monitoring and analysis, providing 
support for early warnings against collapses, reducing mid-span deflection; 

• functional monitoring – traffic safety evaluation, determining truck attributes, 
regulating the flow of hazardous materials over a bridge, prediction of frost 
conditions; 

• inspection and condition evaluation – bridge fatigue investigation, damage 
assessment, estimating the cumulative impairment, identifying vulnerabilities, scour 
estimation and susceptibility, scheduling future inspections; 

• rehabilitation – rating of infrastructure objects, cost estimation, prioritizing 
alternatives under budget constraints, scheduling the works, selecting strategies and 
recommending actions. 

Some general rules on applying AI to various problems have been confirmed by these 
works – a fuzzy inference is suitable for summation of individual assessment values, neural 
networks are more appropriate when it comes to signal processing, and evolutionary 
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algorithms work fine as multiobjective optimizers. Though rarely used, machine learning 
techniques allow the knowledge acquisition from diverse sources, especially from the 
growing bridge databases. 

However – at least for the practical development of a real AI-based BMS application – 
a deeper integration is still needed. Therefore, a hybrid expert tool Neuritis™ has been 
developed [Bien 01a, Bien 01b] and is currently used by our company as an intelligent 
environment for creation of the practical applications. 
 

Neuritis™ – an intelligent development environment 

At first, this utility allows to define a problem in an abstract manner, in the form of the 
“problem tree”. Then a solution is built up as a layered component diagram that we call the 
“expert graph”. This diagram presents the architecture of a hybrid network of interfacing 
blocks, each of them being a data processing component. These components communicate by 
exchanging matrices of real or fuzzy numbers and the interfaces are independent of the 
internal processing. It enables easy modification of the graph structure and flow of 
information, and also reusing the developed knowledge blocks. 

The system’s codename may suggest a domination of neural networks in the produced 
solutions but the range of intelligent components is much richer here – among others, the 
system provides fuzzy components with fuzzy logic inference implementation and an 
evolutionary tuning, mathematical components integrating some useful techniques from 
algebra, calculus and statistics, and neural components with learning abilities (fig. 2). 

Fig. 2. The Neuritis™ IDE main window, showing the problem tree for technical condition evaluation 
and the expert graph for solid concrete supports; the yellow tip windows have been added to present the 
available component classes. 
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The system interface is highly intuitive and the predefined solution needs extensive 
tuning and testing processes. As these operations are completed, a ready-to-use expert system 
can be exported in an executable form and installed within a client application or simply 
transferred to the ordering client. As easy as it gets? Sure, though there’s far more ahead! 
 

The current applications of hybrid expert functions to the BMS 
Currently the two existing bridge management systems use some of the hybrid expert 

functions discussed in this article. The first real-life application of Neuritis-generated system 
is the technical condition evaluation module named BEEF (Bridge Evaluation Expert 
Function). It has been used in practice since 2000 as a part of SMOK, the railway bridge 
management system designed and created for the Polish State Railways (PKP). 

The similar solution is tested in the transportation structure management system 
SZOK, which covers roads and various kinds of engineering structures (fig. 3). SZOK is used 
by many provincial and district departments of transportation in Poland, as well as by the 
highway administrators. 

Fig. 3. The expert system interface integrated with 
the maintenance part of the transportation structure 
management system SZOK: the technical condition 
evaluation proposed by the expert system has to be accepted 
by a bridge inspector. 
 

On the way to an ideal BMS 

With the infrastructure management systems, the reins to the imagination may be 
freely given as the sight of the modern bridge or a highway often makes people think of the 
road to the future. Moreover, it is obvious that the scientific and practical progress in this 
subject has significantly accelerated in the last few years. Using the modern engineering and 
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information technologies, just to mention the rapid application development tools, the 
intelligence may rise on our bridges and roads sooner that it is expected. In my opinion, the 
first and foremost general directions of further BMS development are: 

• wider application of mechanisms that allow more effective knowledge processing and 
machine learning, 

• independent decision making, 
• physical infrastructure extensions that allow the system to affect it directly. 

A futuristic bridge management system might for example perform the following tasks: 

• noticing the existence and approximate location of a damage according to the detected 
change of technical and operation parameters (constantly monitored); 

• acquiring an image or some other characteristics of a potential damage with a mobile 
camera or a robot, 

• classifying the damage using detected features, 
• evaluating the technical condition basing on the set of existing damages, 
• updating a forecast of technical condition changes, concerning environmental 

conditions, traffic load and the expected outlay for rehabilitation and repair; 
• inserting the updated evaluation and forecasted values into a central database (using 

intelligent agents); 
• updating the rank list of objects requiring maintenance actions; 
• limiting the operation parameters (dynamic-content road signs); 
• if the object qualifies to be repaired automatically, performing the repair itself using 

specialized robots. 
 

Conclusions 
The thorough automation of the bridge and road management systems is probably not a 

direct task for the closest future, yet the consistent realization of the presented expert tools 
will allow the reduction of human resource involvement, and broadening the perspectives on 
the development of techniques for maintenance and operation of the transportation 
infrastructure. 
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